On anomalous diffusion and the out of equilibrium response function in one-dimensional models

Autor: Giacomo Gradenigo, Angelo Vulpiani, Dario Villamaina, Andrea Puglisi, Alessandro Sarracino
Přispěvatelé: Villamaina, D., Sarracino, A., Gradenigo, G., Puglisi, A., Vulpiani, A.
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Journal of statistical mechanics 2011 (2011): L01002. doi:10.1088/1742-5468/2011/01/L01002
info:cnr-pdr/source/autori:D. Villamaina; A. Sarracino; G. Gradenigo; A. Puglisi; A. Vulpiani/titolo:On anomalous diffusion and the out of equilibrium response function in one-dimensional models/doi:10.1088%2F1742-5468%2F2011%2F01%2FL01002/rivista:Journal of statistical mechanics/anno:2011/pagina_da:L01002/pagina_a:/intervallo_pagine:L01002/volume:2011
DOI: 10.1088/1742-5468/2011/01/L01002
Popis: We study how the Einstein relation between spontaneous fluctuations and the response to an external perturbation holds in the absence of currents, for the comb model and the elastic single-file, which are examples of systems with subdiffusive transport properties. The relevance of non-equilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down, as is known to happen in systems with standard diffusion. In the case of the comb model, a general relation, which has appeared in the recent literature, between the response function and an unperturbed suitable correlation function, allows us to explain the observed results. This suggests that a relevant ingredient in breaking the Einstein formula, for stationary regimes, is not the anomalous diffusion but the presence of currents driving the system out of equilibrium.
10 pages, 4 figures
Databáze: OpenAIRE