Optimal Exploitation of a Resource with Stochastic Population Dynamics and Delayed Renewal

Autor: Idris Kharroubi, Vathana Ly Vath, Thomas Lim
Přispěvatelé: Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: In this work, we study the optimization problem of a renewable resource in finite time. The resource is assumed to evolve according to a logistic stochastic differential equation. The manager may harvest partially the resource at any time and sell it at a stochastic market price. She may equally decide to renew part of the resource but uniquely at deterministic times. However, we realistically assume that there is a delay in the renewing order. By using the dynamic programming theory, we may obtain the PDE characterization of our value function. To complete our study, we give an algorithm to compute the value function and optimal strategy. Some numerical illustrations will be equally provided.
Databáze: OpenAIRE