Fractal Interpolation Surfaces derived from Fractal Interpolation Functions
Autor: | Pantelis Bouboulis, Leoni Dalla |
---|---|
Rok vydání: | 2007 |
Předmět: |
Fractal dimension on networks
Applied Mathematics Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Trilinear interpolation Bilinear interpolation Linear interpolation Fractal Interpolation Surfaces Fractal analysis Fractals Nearest-neighbor interpolation Fractal derivative Fractal Interpolation Functions Smooth fractal surfaces Box counting dimension Analysis ComputingMethodologies_COMPUTERGRAPHICS Interpolation Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 336:919-936 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2007.01.112 |
Popis: | Based on the construction of Fractal Interpolation Functions, a new construction of Fractal Interpolation Surfaces on arbitrary data is presented and some interesting properties of them are proved. Finally, a lower bound of their box counting dimension is provided. |
Databáze: | OpenAIRE |
Externí odkaz: |