Open-Circuit Photovoltage Exceeding 950 mV with an 840 mV Average at Sb2S3–Thianthrene+/0 Junctions Enabled by Thioperylene Anhydride Back Contacts

Autor: Nicholas A Fitzpatrick, Ronald L. Grimm, Julia L. Martin, Clare P. Masucci, Alexander D. Carl, Curtis W. Doiron
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: ACS Omega, Vol 5, Iss 27, Pp 16875-16884 (2020)
ISSN: 2470-1343
Popis: Covalently attached perylene monolayers serve as back contacts for Sb2S3 photoelectrochemical cells with a thianthrene+/0 front, rectifying contact. Covalent attachment of perylenetetracarboxylic dianhydride, PTCDA, to Si(111) utilizes an anhydride-to-imide conversion at surface-attached amines. For Sb2S3 solar absorbers, we hypothesized that a terminal thioperylene anhydride, i.e., S=C-O-C=S, formed from thionation of the terminal perylene anhydride would serve as a soft, electron-selective and hole-blocking back contact. We explored several routes to convert carbonyls to thiocarbonyls on surface-attached perylene anhydrides including Lawesson's reagent, P4S10, and a P4S10-pyridine complex. Here, P4S10 in toluene yielded the highest conversion as quantified by thioperylene-anhydride-S-to-imide-N ratios in X-ray photoelectron spectroscopy (XPS). Spectra demonstrated minimal residual reagent as determined by the absence of quantifiable phosphorus following sonication and rinsing. Photoelectrochemistry yielded an average |V oc| = 840 ± 90 mV with the highest value of 952 mV under ELH-simulated AM1.5G illumination for chemical-bath-deposited Sb2S3 in the strongly oxidizing thianthrene+/0 redox couple when thioperylene-anhydride-tethered surfaces formed the back contact. Sb2S3 absorbers in which perylene anhydride, esters, thionoesters, and thiols form the back contact yielded significantly decreased |V oc| magnitudes vs Sb2S3 on perylene-thioanhydride-terminated surfaces. We attribute the large V oc to the combination of favorable sulfur-functionalized surfaces for deposition, charge transfer properties of the perylene layer, and use of the thianthrene+/0 redox couple.
Databáze: OpenAIRE