Stress Overshoots in Simple Yield Stress Fluids

Autor: Mauro Sbragaglia, Federico Toschi, Sébastien Manneville, Roberto Benzi, Catherine Barentin, Thibaut Divoux
Přispěvatelé: Dipartimento di Fisica [Roma], Università degli Studi di Roma Tor Vergata [Roma], Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Liquides et interfaces (L&I), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Department of Applied Physics [Eindhoven], Eindhoven University of Technology [Eindhoven] (TU/e), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Computational Multiscale Transport Phenomena (Toschi), Fluids and Flows
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, 2021, 127 (14), pp.148003. ⟨10.1103/PhysRevLett.127.148003⟩
Physical Review Letters, American Physical Society, 2021, 127 (14), pp.148003. ⟨10.1103/PhysRevLett.127.148003⟩
Physical Review Letters, 127(14):148003. American Physical Society
ISSN: 1079-7114
0031-9007
DOI: 10.1103/PhysRevLett.127.148003
Popis: Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maximum referred to as "stress overshoot". This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress $\sigma_\text{M}$ and strain $\gamma_\text{M}$ that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon start-up of shear from the local flow behavior to the global rheological observables.
Comment: 5 pages, 4 figures, supplemental materials with 2 figures
Databáze: OpenAIRE