Gauge Modules for the Lie Algebras of Vector Fields on Affine Varieties

Autor: Yuly Billig, André Zaidan, Jonathan Nilsson
Rok vydání: 2020
Předmět:
Zdroj: Algebras and Representation Theory. 24:1141-1153
ISSN: 1572-9079
1386-923X
DOI: 10.1007/s10468-020-09983-9
Popis: For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra $A$ of functions and the Lie algebra $\mathcal{V}$ of vector fields on the variety. We prove that a gauge module corresponding to a simple $\mathfrak{gl}_N$-module is irreducible as a module over the Lie algebra of vector fields unless it appears in the de Rham complex.
Databáze: OpenAIRE