Gauge Modules for the Lie Algebras of Vector Fields on Affine Varieties
Autor: | Yuly Billig, André Zaidan, Jonathan Nilsson |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
General Mathematics 010102 general mathematics 0211 other engineering and technologies 17B10 021107 urban & regional planning Algebraic variety 02 engineering and technology Gauge (firearms) 01 natural sciences Simple (abstract algebra) Lie algebra FOS: Mathematics Vector field Affine transformation Representation Theory (math.RT) 0101 mathematics Variety (universal algebra) Simple module Mathematics - Representation Theory Mathematics |
Zdroj: | Algebras and Representation Theory. 24:1141-1153 |
ISSN: | 1572-9079 1386-923X |
DOI: | 10.1007/s10468-020-09983-9 |
Popis: | For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra $A$ of functions and the Lie algebra $\mathcal{V}$ of vector fields on the variety. We prove that a gauge module corresponding to a simple $\mathfrak{gl}_N$-module is irreducible as a module over the Lie algebra of vector fields unless it appears in the de Rham complex. |
Databáze: | OpenAIRE |
Externí odkaz: |