Adaptation of the jackknifed ridge methods to the linear mixed models

Autor: M. Revan Özkale, Özge Kuran
Přispěvatelé: Çukurova Üniversitesi
Rok vydání: 2019
Předmět:
Zdroj: Journal of Statistical Computation and Simulation. 89:3413-3452
ISSN: 1563-5163
0094-9655
DOI: 10.1080/00949655.2019.1669037
Popis: The purpose of this article is to obtain the jackknifed ridge predictors in the linear mixed models and to examine the superiorities, the linear combinations of the jackknifed ridge predictors over the ridge, principal components regression, r-k class and Henderson's predictors in terms of bias, covariance matrix and mean square error criteria. Numerical analyses are considered to illustrate the findings and a simulation study is conducted to see the performance of the jackknifed ridge predictors. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
Databáze: OpenAIRE