On algebraic properties of soft real points
Autor: | Hurmet Fulya Akiz, Amlak Ibrahim Alajlan, Sabir Hussain |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Algebraic properties
Soft real point metric T57-57.97 QA299.6-433 Real point Applied mathematics. Quantitative methods Applied Mathematics Astrophysics::High Energy Astrophysical Phenomena Fixed-point theorem Soft single points Soft real point contraction Algebra Soft real points Metric space Differential geometry Geometry and Topology Contraction (operator theory) Analysis Real number Mathematics |
Zdroj: | Fixed Point Theory and Applications, Vol 2019, Iss 1, Pp 1-20 (2019) |
ISSN: | 1687-1812 |
DOI: | 10.1186/s13663-019-0659-2 |
Popis: | In this paper, we introduce and discuss soft single points, which proceed towards soft real points by using real numbers and subsets of set of real numbers. We also define the basic operations on soft real points and explore the algebraic properties. We observe that the set of all soft real points forms a ring. Moreover, we study the soft real point metric using soft real point and explore some of its properties. We then establish a soft real point contraction fixed point theorem using soft real point metric space. It is interesting to mention that these concepts may be helpful for researchers to navigate the ideas put forth in a soft metric extension of several important fixed point theorems for metric spaces deduced from comparable existing results. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |