Phosphorylation and functionality of CdtR in Clostridium difficile

Autor: Nigel P. Minton, Sarah A. Kuehne, Terry W. Bilverstone
Rok vydání: 2019
Předmět:
Zdroj: Anaerobe
ISSN: 1075-9964
Popis: The production of TcdA, TcdB and CDT in Clostridium difficile PCR ribotype 027, is regulated by the two-component system response regulator CdtR. Despite this, little is known about the signal transduction pathway leading to the activation of CdtR. In this study, we generated R20291ΔPalocΔcdtR model strains expressing CdtR phospho-variants in which our predicted phospho-accepting Asp, Asp61 was mutated for Ala or Glu. The constructs were assessed for their ability to restore CDT production. Dephospho-CdtR-Asp61Ala was completely non-functional and mirrored the cdtR-deletion mutant, whilst phospho-CdtR-Asp61Glu was functional, possessing 38–52% of wild-type activity. Taken together, these data suggest that CdtR is activated by phosphorylation of Asp61. The same principles were applied to assess the function of PCR ribotype 078-derived CdtR, which was shown to be non-functional owing to polymorphisms present within its coding gene. Conversely, polymorphisms present within its promoter region, provide significantly enhanced promoter activity compared with its PCR ribotype 027 counterpart. To ensure our data were representative for each ribotype, we determined that the cdtR nucleotide sequence was conserved in a small library of eight PCR ribotype 027 clinical isolates and nineteen PCR ribotype 078 isolates from clinical and animal origin.
Highlights • R20291ΔPaLocΔcdtR model strains were applied to study the toxin regulator CdtR. • (de)phosphomimetic substitutions revealed that CdtR is activated by phosphorylation of Asp61. • Ribotype 078 CdtR was shown to be non-functional. • PcdtR derived from ribotype 078 has much stronger activity than its ribotype 027 counterpart. • cdtR nucleotide sequence is conserved within eight ribotype 027 and nineteen ribotype 078 strains.
Databáze: OpenAIRE