Laser demonstration with highly doped Yb:Gd2O3 and Yb:Y2O3 crystals grown by an original flux method

Autor: Frédéric Druon, Patrick Georges, Daniel Rytz, Thomas Graf, Gabriel Buse, Oudomsack Viraphong, Sylvie Janicot, Marwan Abdou Ahmed, Matias Velázquez, Philippe Veber
Přispěvatelé: Laboratoire Charles Fabry / Lasers, Laboratoire Charles Fabry (LCF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Institut für Strahwerkzeuge (IFSW), Stuttgart University, FEE, FEE GmBh
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Optics Letters
Optics Letters, Optical Society of America-OSA Publishing, 2013, 38 (20), pp.4146-4149. ⟨10.1364/OL.38.004146⟩
ISSN: 0146-9592
1539-4794
DOI: 10.1364/OL.38.004146⟩
Popis: International audience; We present, to the best of our knowledge, the first laser demonstration of an Yb-doped Gd2O3 cubic crystal. This crystal was obtained by the flux method using an original borate-based solvent, which was particularly well suited to the growth of rare earth sesquioxide crystals at half the working temperature of classical growth techniques. This flux method is a very interesting alternative for the production of laser sesquioxide crystals, not only because it provides access to new matrices of the cubic polymorph, but also because it permits high Yb3+-doping levels for these crystals. The first laser results of two highly Yb3+-doped sesquioxides, namely Gd2O3 and Y2O3, grown by this flux method are presented here, including the Ti:sapphire and diode pumping configurations. Laser efficiencies and emission spectra for these two crystals were studied and compared.
Databáze: OpenAIRE