Comparing test-retest reliability of dynamic functional connectivity methods
Autor: | James J. Pekar, Brian Caffo, Anita D. Barber, Yuting Xu, Jessica R. Cohen, Mary Beth Nebel, Ann S. Choe, Martin A. Lindquist |
---|---|
Rok vydání: | 2017 |
Předmět: |
Computer science
Cognitive Neuroscience computer.software_genre Article 050105 experimental psychology 03 medical and health sciences 0302 clinical medicine Connectome Image Processing Computer-Assisted medicine Humans 0501 psychology and cognitive sciences Reliability (statistics) Dynamic functional connectivity Human Connectome Project Blood-oxygen-level dependent medicine.diagnostic_test Functional connectivity 05 social sciences Brain Reproducibility of Results Magnetic resonance imaging Magnetic Resonance Imaging Neurology Data mining Functional magnetic resonance imaging computer 030217 neurology & neurosurgery |
Zdroj: | NeuroImage. 158:155-175 |
ISSN: | 1053-8119 |
Popis: | Due to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid functional connectivity (FC) changes that occur during resting-state functional magnetic resonance imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically challenging, due to the low signal-to-noise ratio of the blood oxygen level dependent (BOLD) signal in fMRI and the massive number of data points generated during the analysis. Thus, it is important to establish methods and summary measures that maximize reliability and the utility of dynamic FC to provide insight into brain function. In this study, we investigated the reliability of dynamic FC summary measures derived using three commonly used estimation methods - sliding window (SW), tapered sliding window (TSW), and dynamic conditional correlations (DCC) methods. We applied each of these techniques to two publicly available rs-fMRI test-retest data sets - the Multi-Modal MRI Reproducibility Resource (Kirby Data) and the Human Connectome Project (HCP Data). The reliability of two categories of dynamic FC summary measures were assessed, specifically basic summary statistics of the dynamic correlations and summary measures derived from recurring whole-brain patterns of FC ("brain states"). The results provide evidence that dynamic correlations are reliably detected in both test-retest data sets, and the DCC method outperforms SW methods in terms of the reliability of summary statistics. However, across all estimation methods, reliability of the brain state-derived measures was low. Notably, the results also show that the DCC-derived dynamic correlation variances are significantly more reliable than those derived using the non-parametric estimation methods. This is important, as the fluctuations of dynamic FC (i.e., its variance) has a strong potential to provide summary measures that can be used to find meaningful individual differences in dynamic FC. We therefore conclude that utilizing the variance of the dynamic connectivity is an important component in any dynamic FC-derived summary measure. |
Databáze: | OpenAIRE |
Externí odkaz: |