Force-based atomistic/continuum blending for multilattices
Autor: | Derek Olson, Brian Van Koten, Xingjie Li, Christoph Ortner |
---|---|
Rok vydání: | 2018 |
Předmět: |
Graphene
Continuum (topology) Applied Mathematics Numerical analysis Numerical Analysis (math.NA) 010103 numerical & computational mathematics 01 natural sciences Finite element method Mathematics::Numerical Analysis law.invention 010101 applied mathematics Computational Mathematics Rate of convergence law 65N12 65N15 70C20 82D25 FOS: Mathematics Mathematics - Numerical Analysis Statistical physics 0101 mathematics QA Mathematics |
Zdroj: | Numerische Mathematik. 140:703-754 |
ISSN: | 0945-3245 0029-599X |
DOI: | 10.1007/s00211-018-0979-x |
Popis: | We formulate the blended force-based quasicontinuum (BQCF) method for multilattices and develop rigorous error estimates in terms of the approximation parameters: atomistic region, blending region and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone--Wales defect in graphene. Fixed typos and added additional details in section 3.3 and explanations in sections 4.5 and 4.6 |
Databáze: | OpenAIRE |
Externí odkaz: |