Remarks on Joachimsthal Integral and Poritsky Property

Autor: Serge Tabachnikov, Maxim Arnold
Rok vydání: 2021
Předmět:
Zdroj: Arnold Mathematical Journal. 7:483-491
ISSN: 2199-6806
2199-6792
Popis: The billiard in an ellipse has a conserved quantity, the Joachimsthal integral. We show that the existence of such an integral characterizes conics. We extend this result to the spherical and hyperbolic geometries and to higher dimensions. We connect the existence of Joachimsthal integral with the Poritsky property, a property of billiard curves, called so after H. Poritsky whose important paper Poritsky (Ann Math 51:446–470, 1950) was one of the early studies of the billiard problem.
Databáze: OpenAIRE