Automatic View-Point Selection for Inter-Operative Endoscopic Surveillance
Autor: | Vemuri, Anant S., Nicolau, Stéphane, Marescaux, Jacques, Soler, Luc, Ayache, Nicholas |
---|---|
Přispěvatelé: | Vemuri, Anant Suraj, Analysis and Simulation of Biomedical Images (ASCLEPIOS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), L'Institut hospitalo-universitaire de Strasbourg (IHU Strasbourg), Institut National de Recherche en Informatique et en Automatique (Inria)-l'Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD)-Les Hôpitaux Universitaires de Strasbourg (HUS)-La Fédération des Crédits Mutuels Centre Est (FCMCE)-L'Association pour la Recherche contre le Cancer (ARC)-La société Karl STORZ, Institut de Recherche Contre les Cancers de l'Appareil Digestif-European Institute of Telesurgery (IRCAD/EITS), Tanveer Syeda-Mahmood, Hayit Greenspan, Anant Madabhushi |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
FOS: Computer and information sciences
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] Endoscopic Image classification Computer Vision and Pattern Recognition (cs.CV) [INFO.INFO-IM]Computer Science [cs]/Medical Imaging [INFO.INFO-IM] Computer Science [cs]/Medical Imaging Computer Science - Computer Vision and Pattern Recognition Barrett's Oesophagus Computer assisted intervention Endoluminal surgery [STAT.ML] Statistics [stat]/Machine Learning [stat.ML] |
Zdroj: | Medical Content-based Retrieval for Clinical Decision Support Medical Content-based Retrieval for Clinical Decision Support, Tanveer Syeda-Mahmood; Hayit Greenspan; Anant Madabhushi, Oct 2015, Munich, Germany. pp.1-8 |
Popis: | Esophageal adenocarcinoma arises from Barrett's esophagus, which is the most serious complication of gastroesophageal reflux disease. Strategies for screening involve periodic surveillance and tissue biopsies. A major challenge in such regular examinations is to record and track the disease evolution and re-localization of biopsied sites to provide targeted treatments. In this paper, we extend our original inter-operative relocalization framework to provide a constrained image based search for obtaining the best view-point match to the live view. Within this context we investigate the effect of: the choice of feature descriptors and color-space; filtering of uninformative frames and endoscopic modality, for view-point localization. Our experiments indicate an improvement in the best view-point retrieval rate to [92%,87%] from [73%,76%] (in our previous approach) for NBI and WL. Medical Content-based Retrieval for Clinical Decision Support and Treatment Planning, MICCAI Conference |
Databáze: | OpenAIRE |
Externí odkaz: |