Automatic View-Point Selection for Inter-Operative Endoscopic Surveillance

Autor: Vemuri, Anant S., Nicolau, Stéphane, Marescaux, Jacques, Soler, Luc, Ayache, Nicholas
Přispěvatelé: Vemuri, Anant Suraj, Analysis and Simulation of Biomedical Images (ASCLEPIOS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), L'Institut hospitalo-universitaire de Strasbourg (IHU Strasbourg), Institut National de Recherche en Informatique et en Automatique (Inria)-l'Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD)-Les Hôpitaux Universitaires de Strasbourg (HUS)-La Fédération des Crédits Mutuels Centre Est (FCMCE)-L'Association pour la Recherche contre le Cancer (ARC)-La société Karl STORZ, Institut de Recherche Contre les Cancers de l'Appareil Digestif-European Institute of Telesurgery (IRCAD/EITS), Tanveer Syeda-Mahmood, Hayit Greenspan, Anant Madabhushi
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Medical Content-based Retrieval for Clinical Decision Support
Medical Content-based Retrieval for Clinical Decision Support, Tanveer Syeda-Mahmood; Hayit Greenspan; Anant Madabhushi, Oct 2015, Munich, Germany. pp.1-8
Popis: Esophageal adenocarcinoma arises from Barrett's esophagus, which is the most serious complication of gastroesophageal reflux disease. Strategies for screening involve periodic surveillance and tissue biopsies. A major challenge in such regular examinations is to record and track the disease evolution and re-localization of biopsied sites to provide targeted treatments. In this paper, we extend our original inter-operative relocalization framework to provide a constrained image based search for obtaining the best view-point match to the live view. Within this context we investigate the effect of: the choice of feature descriptors and color-space; filtering of uninformative frames and endoscopic modality, for view-point localization. Our experiments indicate an improvement in the best view-point retrieval rate to [92%,87%] from [73%,76%] (in our previous approach) for NBI and WL.
Medical Content-based Retrieval for Clinical Decision Support and Treatment Planning, MICCAI Conference
Databáze: OpenAIRE