Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure
Autor: | Virginie Simone, A. Boulineau, A. de Geyer, Denis Rouchon, Loïc Simonin, Sebastien Martinet |
---|---|
Přispěvatelé: | Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Service Général des Rayons X (SGX ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Sodium ion battery
Materials science Inorganic chemistry Energy Engineering and Power Technology chemistry.chemical_element 02 engineering and technology Lithium 010402 general chemistry 01 natural sciences law.invention chemistry.chemical_compound Adsorption law Electrochemistry Na Graphite Intercalation Compounds Biomass Ethylene carbonate [PHYS]Physics [physics] Graphene Sodium-ion battery 021001 nanoscience & nanotechnology 0104 chemical sciences Fuel Technology chemistry Chemical engineering 13. Climate action Hard carbon Dimethyl carbonate 0210 nano-technology Carbon Energy (miscellaneous) BET theory |
Zdroj: | Journal of Energy Chemistry Journal of Energy Chemistry, 2016, 25 (5), pp.761-768. ⟨10.1016/j.jechem.2016.04.016⟩ Journal of Energy Chemistry, Elsevier, 2016, 25 (5), pp.761-768. ⟨10.1016/j.jechem.2016.04.016⟩ |
ISSN: | 2095-4956 |
DOI: | 10.1016/j.jechem.2016.04.016⟩ |
Popis: | International audience; Cellulose, the most abundant organic polymer on Earth, is a sustainable source of carbon to use as a negative electrode for sodium ion batteries. Here, hard carbons (HC) prepared by cellulose pyrolysis were investigated with varying pyrolysis temperature from 700 degrees C to 1600 degrees C. Characterisation methods such as Small Angle X-ray Scattering (SAXS) measurements and N-2 adsorption were performed to analyse porosity differences between the samples. The graphene sheet arrangements were observed by transmission electron microscopy (TEM): an ordering of the graphene sheets is observed at temperatures above 1150 degrees C and small crystalline domains appear over 1400 degrees C. As the graphene sheets start to align, the BET surface area decreases and the micropore size increases. To correlate hard carbon structures and electrochemical performances, different tests in Na//HC cells with 1 M NaPF6 ethylene carbonate/dimethyl carbonate (EC/DMC) were performed. Samples pyrolysed from 1300 degrees C to 1600 degrees C showed a 300 mAh/g reversible capacity at C/10 rate (where C = 372 mA/g) with an excellent stability in cycling and a very good initial Coulombic efficiency of up to 84%. Furthermore, hard carbons showed an excellent rate capability where sodium extraction rate varies from C/10 to 5 C. At 5 C more than 80% of reversible capacity remains stable for hard carbons synthesized from 1000 degrees C to 1600 degrees C. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |