Bacterial cell wall nanoimaging by autoblinking microscopy
Autor: | Jean-Baptiste Sibarita, Kevin Floc’h, Joanna Timmins, Rémi Galland, Dominique Bourgeois, Pascale Servant, Françoise Lacroix, Corey Butler, Liliana Barbieri |
---|---|
Přispěvatelé: | Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), MOTIV, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Interdisciplinary Institute for Neuroscience (IINS), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut d'Informatique et de Mathématiques Appliquées de Grenoble (IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, Optique et Techniques Instrumentales pour le Vivant (MOTIV-LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Point Accumulation For Imaging In Nanoscale Topography (PAINT) Photoactivated Localization Microscopy (PALM) Science 030106 microbiology PALM Imaging Bacterial cell structure Cell wall 03 medical and health sciences Cell Wall Microscopy Nanotechnology Deinococcus ComputingMilieux_MISCELLANEOUS Multidisciplinary biology Chemistry biology.organism_classification Fluorescence Deinococcus Strains [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] [SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology Single Molecule Imaging Characterization (materials science) 030104 developmental biology Membrane Microscopy Fluorescence Single-molecule Localization Microscopy (SMLM) Biophysics Medicine Bacteria |
Zdroj: | Scientific Reports Scientific Reports, Nature Publishing Group, 2018, 8 (1), ⟨10.1038/s41598-018-32335-z⟩ Scientific Reports, 2018, 8 (1), ⟨10.1038/s41598-018-32335-z⟩ Scientific Reports, Vol 8, Iss 1, Pp 1-12 (2018) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-32335-z⟩ |
Popis: | Spurious blinking fluorescent spots are often seen in bacteria during single-molecule localization microscopy experiments. Although this ‘autoblinking’ phenomenon is widespread, its origin remains unclear. In Deinococcus strains, we observed particularly strong autoblinking at the periphery of the bacteria, facilitating its comprehensive characterization. A systematic evaluation of the contributions of different components of the sample environment to autoblinking levels and the in-depth analysis of the photophysical properties of autoblinking molecules indicate that the phenomenon results from transient binding of fluorophores originating mostly from the growth medium to the bacterial cell wall, which produces single-molecule fluorescence through a Point Accumulation for Imaging in Nanoscale Topography (PAINT) mechanism. Our data suggest that the autoblinking molecules preferentially bind to the plasma membrane of bacterial cells. Autoblinking microscopy was used to acquire nanoscale images of live, unlabeled D. radiodurans and could be combined with PALM imaging of PAmCherry-labeled bacteria in two-color experiments. Autoblinking-based super-resolved images provided insight into the formation of septa in dividing bacteria and revealed heterogeneities in the distribution and dynamics of autoblinking molecules within the cell wall. |
Databáze: | OpenAIRE |
Externí odkaz: |