Regenerative random permutations of integers
Autor: | Wenpin Tang, Jim Pitman |
---|---|
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Statistics::Theory Class (set theory) regenerative processes renewal processes 01 natural sciences Combinatorics cycle structure 010104 statistics & probability 05A05 60K05 Mathematics::Probability indecomposable permutations FOS: Mathematics 60C05 0101 mathematics size biasing Mathematics Mathematics::Combinatorics Probability (math.PR) 010102 general mathematics Limiting Bernoulli sieve 05A05 60C05 60K05 Mallows permutations Statistics Probability and Uncertainty Mathematics - Probability |
Zdroj: | Ann. Probab. 47, no. 3 (2019), 1378-1416 |
ISSN: | 0091-1798 |
DOI: | 10.1214/18-aop1286 |
Popis: | Motivated by recent studies of large Mallows$(q)$ permutations, we propose a class of random permutations of $\mathbb{N}_{+}$ and of $\mathbb{Z}$, called regenerative permutations. Many previous results of the limiting Mallows$(q)$ permutations are recovered and extended. Three special examples: blocked permutations, p-shifted permutations and p-biased permutations are studied. Comment: 30 pages. This paper is published by https://projecteuclid.org/euclid.aop/1556784022 |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...