Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster

Autor: Julián Mensch, John R. B. Lighton, Gerardo José de la Vega, Carmen Rolandi, Pablo E. Schilman
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0106 biological sciences
0301 basic medicine
Moscas
Biología
Climate Change
Population
Climatic adaptation
Context (language use)
Biology
010603 evolutionary biology
01 natural sciences
Variación Genética
CTMAX
Ciencias Biológicas
purl.org/becyt/ford/1 [https]
03 medical and health sciences
Genetic variation
GLOBAL WARMING SCENARIO
GWAS
Genetic variability
Critical thermal maximum
Allele
Tolerancia al Calor
education
purl.org/becyt/ford/1.6 [https]
Ecology
Evolution
Behavior and Systematics

Nature and Landscape Conservation
Original Research
SNPS
education.field_of_study
Ecology
global warming scenario
Temperature
Genetic Variation
climatic adaptation
Temperatura
CTmax
Heat Tolerance
030104 developmental biology
Drosophila melanogaster
Natural population growth
Evolutionary biology
Cambio Climático
CLIMATIC ADAPTATION
Drosophila
DGRP
CIENCIAS NATURALES Y EXACTAS
SNPs
Zdroj: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Ecology and Evolution 8 (20) : 1-10 (2018)
INTA Digital (INTA)
Instituto Nacional de Tecnología Agropecuaria
instacron:INTA
Ecology and Evolution
Popis: The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax. Fil: Rolandi, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Lighton, John R. B.. Sable Systems International; Estados Unidos Fil: de la Vega, Gerardo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina Fil: Schilman, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Mensch, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina
Databáze: OpenAIRE