Convergence rates of deep ReLU networks for multiclass classification

Autor: Bos, Thijs, Schmidt-Hieber, Johannes
Přispěvatelé: Mathematics of Operations Research, Digital Society Institute
Rok vydání: 2022
Předmět:
Zdroj: Electronic Journal of Statistics, 16(1), 2724-2773. Institute of Mathematical Statistics
ISSN: 1935-7524
DOI: 10.1214/22-ejs2011
Popis: For classification problems, trained deep neural networks return probabilities of class memberships. In this work we study convergence of the learned probabilities to the true conditional class probabilities. More specifically we consider sparse deep ReLU network reconstructions minimizing cross-entropy loss in the multiclass classification setup. Interesting phenomena occur when the class membership probabilities are close to zero. Convergence rates are derived that depend on the near-zero behaviour via a margin-type condition.
Comment: convergence rates, ReLU networks, multiclass classification, conditional class probabilities, margin condition
Databáze: OpenAIRE