The closed knight tour problem in higher dimensions
Autor: | Bruno Golenia, Joshua Erde, Sylvain Golénia |
---|---|
Přispěvatelé: | Computer Science Department [Bristol], University of Bristol [Bristol], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
0102 computer and information sciences
01 natural sciences Theoretical Computer Science Combinatorics symbols.namesake Extension (metaphysics) Chessboard [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics 0101 mathematics Mathematics Hamiltonian cycle Applied Mathematics Knight's tour 010102 general mathematics 16. Peace & justice Hamiltonian path Computational Theory and Mathematics 010201 computation theory & mathematics symbols Knight Geometry and Topology Combinatorics (math.CO) 05C45 00A08 |
Zdroj: | The Electronic Journal of Combinatorics The Electronic Journal of Combinatorics, Open Journal Systems, 2012, pp.Volume 19, Issue 4 |
ISSN: | 1077-8926 |
Popis: | The problem of existence of closed knight tours for rectangular chessboards was solved by Schwenk in 1991. Last year, in 2011, DeMaio and Mathew provide an extension of this result for 3-dimensional rectangular boards. In this article, we give the solution for $n$-dimensional rectangular boards, for $n\geq 4$. Comment: This is a merged version of the previous version and the approach of Erde arXiv:1202.5548 |
Databáze: | OpenAIRE |
Externí odkaz: |