Human Proteinase-3 Expression Is Regulated by PU.1 in Conjunction with a Cytidine-rich Element

Autor: Kerry F. Franklin, Anne Sturrock, John R. Hoidal
Rok vydání: 1996
Předmět:
Zdroj: Journal of Biological Chemistry. 271:32392-32402
ISSN: 0021-9258
DOI: 10.1074/jbc.271.50.32392
Popis: Human proteinase-3 is one of three serine proteinases present in the azurophil granules of polymorphonuclear leukocytes along with elastase and cathepsin G. Proteinase-3 gene expression is confined to the promyelocytic stage of polymorphonuclear leukocyte maturation. The present investigation identifies elements responsible for this highly controlled tissue- and developmental-specific expression of proteinase-3. Within the first 200 base pairs of the proteinase-3 promoter, two elements were identified as important for expression, these elements at −101 and −190 confer the majority of the activity. The element at −101 has a PU.1 consensus. It binds a myeloid nuclear protein of approximately 45 kDa that “supershifts” with PU.1 antibody and is competed by the CD11b PU.1 element. The element at −190 has a core sequence of CCCCGCCC (CG element). The cytidines but not the guanidine are essential for promoter activity. The CG element binds a second nuclear protein with a molecular mass of approximately 40 kDa that is found in cells of myeloid lineage as well as non-myeloid HeLa cells. However, the proteinase-3 promoter is not active in HeLa cells which suggests that the CG element alone is not sufficient for proteinase-3 gene expression. Maturation of promyelocytic cells results in an inhibition of proteinase-3 gene expression and a reduction in nuclear protein binding to the PU.1 and CG elements. Similar elements occur in the elastase and cathepsin G promoters. Using the elastase and cathepsin G PU.1 and CG-like elements as probes results in identical band-shift patterns to that obtained with proteinase-3 PU.1 and CG elements. These data suggest that there is cooperative interaction between a PU.1 and a CG element with a consensus of CCCCXCCC and that they are important control elements for tissue- and developmental-specific expression of azurophil serine proteinases of polymorphonuclear leukocytes.
Databáze: OpenAIRE