Arctic sea ice algae differ markedly from phytoplankton in their ecophysiological characteristics
Autor: | Tove M. Gabrielsen, Ane C Kvernvik, Józef Wiktor, Eva Leu, Sander Verbiest, Michael Greenacre, Clara Jule Marie Hoppe, Marit Reigstad |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
geography geography.geographical_feature_category 010504 meteorology & atmospheric sciences Ecology biology 010604 marine biology & hydrobiology Climate change Pelagic zone Aquatic Science biology.organism_classification 01 natural sciences Algal bloom Arctic ice pack Oceanography Arctic Algae 13. Climate action Phytoplankton Sea ice Environmental science VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497 14. Life underwater Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences |
Zdroj: | Marine Ecology Progress Series |
Popis: | Photophysiological and biochemical characteristics were investigated in natural communities of Arctic sea ice algae and phytoplankton to understand their respective responses towards variable irradiance and nutrient regimes. This study revealed large differences in photosynthetic efficiency and capacity between the 2 types of algal assemblages. Sea ice algal assemblages clearly displayed increased photoprotective energy dissipation under the highest daily average irradiance levels (>8 µmol photons m-2 s-1). In contrast, phytoplankton assemblages were generally light-limited within the same irradiance ranges. Furthermore, phytoplankton assemblages exhibited more efficient carbon assimilation rates in the low irradiance range compared to sea ice algae, possibly explaining the ability of phytoplankton to generate substantial under-ice blooms. They were also able to readily adjust and increase their carbon production to higher irradiances. The Arctic is warming more rapidly than any other oceanic region on the planet, and as a consequence, irradiance levels experienced by microalgae are expected to increase due to declining ice thickness and snow cover, as well as enhanced stratification. The results of this study suggest that sea ice algae may have less capacity to adapt to the expected environmental changes compared to phytoplankton. We therefore anticipate a change in sea ice-based vs. pelagic primary production with respect to timing and quantity in a future Arctic. The clearly distinct responses of sea ice algae vs. phytoplankton need to be incorporated into model scenarios of current and future Arctic algal blooms and considered when predicting implications for the entire ecosystem and associated biogeochemical fluxes. |
Databáze: | OpenAIRE |
Externí odkaz: |