CD3bright signals on γδ T cells identify IL-17A-producing Vγ6Vδ1+ T cells

Autor: François Trottein, Adam P Uldrich, Thierry Mallevaey, Christophe Paget, Paul J Neeson, Dale I. Godfrey, Geoffrey R. Hill, N. A. Gherardin, Paul A. Beavis, David Dombrowicz, Delphine Staumont-Sallé, Maya Hassane, Denis A. Mogilenko, N. K. Escalante, Mark J. Smyth, Fernando Souza-Fonseca-Guimaraes, Melvyn T. Chow, Helene Duret, David Ritchie, Gabrielle T. Belz
Přispěvatelé: Derudas, Marie-Hélène, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Cancer immunology program, Peter MacCallum Cancer Center, Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Department of Microbiology and Immunology, QIMR Berghofer Medical Research Institute, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), European Genomic Institute of Diabetes (EGID), Service de dermatologie, Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Immunology, University of Toronto, Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research (WEHI), School of Medicine, University of Queensland [Brisbane], his work was supported by an NHMRC Program Grant (454569 and 1013367). CP was supported by a postdoctoral fellowship from the US Department of Defense (W81XWH‐11‐1‐0585) and INSERM. MJS and FSFG were supported by a National Health and Medical Research Council of Australia (NHMRC) Australia Fellowship and Program Grant (1013367). MTC was supported by a Cancer Research Institute PhD scholarship. GTB was supported by an ARC Future Fellowship. FT was supported by CNRS. PN was supported by a National Health and Medical Research Council of Australia (NHMRC) Program Grant (1013367). DIG was supported by an NHMRC Senior Principal Research Fellowship (1020770). NAG was supported by a Leukaemia Foundation of Australia postgraduate scholarship. TM is supported by research grants from the Canadian Institutes of Health Research and the Crohn and Colitis Foundation of Canada, as well as a Tier 2 Canada Research Chair. NKE is a recipient of a Vanier Canada Graduate Scholarship. DAM, DS‐S and DD were supported by the Agence Nationale de la Recherche (ANR‐10‐LABX‐46) and the ‘Fondation de France’., We thank Josette Fontaine, Shin‐Foong Ngiow, Deborah Knight, Sébastien Fleury, Julien Wartelle and Kim Steegh for technical assistance. We thank Qerime Mundrea, Ben Venville, Jessica May, Joanne Sutton and Liam Town for maintaining and caring for the mice. We also thank the Peter MacCallum flow cytometry core facility for technical assistance., Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 (EGID), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Rok vydání: 2014
Předmět:
Male
CD3 Complex
Inflammasomes
T-Lymphocytes
Interleukin-1beta
MESH: Amino Acid Sequence
MESH: Interleukin-1beta/metabolism
Interleukin-23
MESH: Lung/drug effects
MESH: Skin/immunology
MESH: Lung/immunology
MESH: CD3 Complex/chemistry
MESH: Lymphocyte Subsets/immunology
Immunology and Allergy
Homeostasis
MESH: Animals
IL-2 receptor
MESH: Homeostasis/drug effects
Lung
MESH: Immunity
Skin
MESH: Interleukin-23
Orphan receptor
education.field_of_study
Imiquimod
biology
MESH: Nuclear Receptor Subfamily 1
Group F
Member 3/metabolism

Interleukin-17
Receptors
Antigen
T-Cell
gamma-delta

MESH: T-Lymphocytes/immunology
Nuclear Receptor Subfamily 1
Group F
Member 3

MESH: CD3 Complex/metabolism
3. Good health
MESH: NLR Family
Pyrin Domain-Containing 3 Protein

medicine.anatomical_structure
Phenotype
MESH: Aminoquinolines/pharmacology
MESH: Carrier Proteins/metabolism
Aminoquinolines
[SDV.IMM]Life Sciences [q-bio]/Immunology
MESH: Interleukin-17/biosynthesis
[SDV.IMM] Life Sciences [q-bio]/Immunology
MESH: Skin/drug effects
CD3
T cell
MESH: T-Lymphocytes/drug effects
Immunology
Population
Molecular Sequence Data
MESH: Germ Cells/drug effects
MESH: Imiquimod
MESH: Phenotype
Immune system
Antigen
MESH: Mice
Inbred C57BL

NLR Family
Pyrin Domain-Containing 3 Protein

MESH: Inflammasomes/drug effects
medicine
Animals
Amino Acid Sequence
education
MESH: Molecular Sequence Data
Innate immune system
MESH: Inflammasomes/metabolism
Immunity
Cell Biology
MESH: Lymphocyte Subsets/drug effects
MESH: Male
Lymphocyte Subsets
Mice
Inbred C57BL

Germ Cells
MESH: Receptors
Antigen
T-Cell
gamma-delta/metabolism

biology.protein
Carrier Proteins
Zdroj: Immunology and Cell Biology
Immunology and Cell Biology, 2015, 93 (2), pp.198-212. ⟨10.1038/icb.2014.94⟩
Immunology and Cell Biology, Nature Publishing Group, 2015, 93 (2), pp.198-212. ⟨10.1038/icb.2014.94⟩
ISSN: 1440-1711
0818-9641
DOI: 10.1038/icb.2014.94⟩
Popis: International audience; Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has an important role at mucosal sites in a wide range of immune responses including infection, allergy and auto-immunity. γδ T cells are recognized as IL-17 producers, but based on the level of CD3 expression, we now define the remarkable ability of a CD3(bright) γδ T-cell subset with an effector memory phenotype to rapidly produce IL-17A, but not interferon-γ. CD3(bright) γδ T cells uniformly express the canonical germline encoded Vγ6/Vδ1(+) T-cell receptor. They are widely distributed with a preferential representation in the lungs and skin are negatively impacted in the absence of retinoic acid receptor-related orphan receptor gammat expression or endogenous flora. This population responded rapidly to various stimuli in a mechanism involving IL-23 and NOD-like receptor family, pyrin domain containing 3 (NLRP3)-inflammasome-dependent IL-1β. Finally, we demonstrated that IL-17-producing CD3(bright) γδ T cells responded promptly and strongly to pneumococcal infection and during skin inflammation. Here, we propose a new way to specifically analyze IL-17-producing Vγ6/Vδ1(+) T cells based on the level of CD3 signals. Using this gating strategy, our data reinforce the crucial role of this γδ T-cell subset in respiratory and skin disorders.
Databáze: OpenAIRE