Numerical optimization of a bicylindrical resonator impedance: differences and common features between a saxophone resonator and a bicylindrical resonator
Autor: | Jean-Baptiste Doc, Philippe Guillemain, Michael Jousserand, Tom Colinot, Christophe Vergez |
---|---|
Přispěvatelé: | Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Buffet Group, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Acoustics and Ultrasonics Acoustics [PHYS.MECA]Physics [physics]/Mechanics [physics] 01 natural sciences [PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] 03 medical and health sciences Resonator 0302 clinical medicine 0103 physical sciences 030223 otorhinolaryngology 010301 acoustics Electrical impedance Music |
Zdroj: | Acta Acustica united with Acustica Acta Acustica united with Acustica, 2019, 105 (6), pp.1217-1227. ⟨10.3813/AAA.919398⟩ Acta Acustica united with Acustica, Hirzel Verlag, 2019, 105 (6), pp.1217-1227. ⟨10.3813/AAA.919398⟩ |
ISSN: | 1610-1928 1861-9959 |
DOI: | 10.3813/AAA.919398⟩ |
Popis: | International audience; This paper explores the analogy between a saxophone resonator and a bicylindrical resonator, sometimes called transverse saxophone or cylindrical saxophone. The dimensions of a bicylindrical resonator are optimized numerically to approximate a saxophone impedance. The target is the impedance measured on an usual saxophone. A classical gradient-based non-linear least-square fit function is used. Several cost functions corresponding to distances to the target impedance are assessed, according to their influence on the optimal geometry. Compromises appear between the frequency regions depending on the cost function. It is shown that the chosen cost functions are differentiable and locally convex. The convexity region contains the initial geometrical dimensions obtained by crude approximation of the first resonance frequency of the target. One optimal geometry is submitted to further analysis using descriptors of the impedance. Its deviations from the target saxophone are put into perspective with the discrepancies between the target saxophone and a saxophone from a different manufacture. Descriptors such as harmonicity or impedance peak ratio set the bicylindrical resonator apart from saxophone resonators, despite a good agreement of the resonance frequencies. Therefore, a reed instrument with a bicylindrical resonator could be tuned to produce the same notes as a saxophone, but due to differences in the intrinsic characteristics of the resonator, it should be considered not as a saxophone but as a distinct instrument. |
Databáze: | OpenAIRE |
Externí odkaz: |