Exploring the efficiency potential for an active magnetic regenerator
Autor: | Dan Eriksen, Rasmus Bjørk, Kurt Engelbrecht, Christian R.H. Bahl |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Fluid Flow and Transfer Processes
Pressure drop Engineering Environmental Engineering business.industry 020209 energy Drop (liquid) Cooling load Electrical engineering Refrigeration 02 engineering and technology Building and Construction Mechanics Coefficient of performance 021001 nanoscience & nanotechnology Power (physics) Limit (music) Regenerative heat exchanger 0202 electrical engineering electronic engineering information engineering 0210 nano-technology business |
Zdroj: | Eriksen, D, Engelbrecht, K, Haffenden Bahl, C R & Bjørk, R 2016, ' Exploring the efficiency potential for an active magnetic regenerator ', Science and Technology for the Built Environment, vol. 22, no. 5, pp. 527-533 . https://doi.org/10.1080/23744731.2016.1173495 |
DOI: | 10.1080/23744731.2016.1173495 |
Popis: | A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second-law efficiency of 18% was obtained at a cooling load of 81.5 W, resulting in a temperature span of 15.5 K and a coefficient of performance of 3.6. A loss analysis is given, based on measured pumping power and shaft power together with theoretically estimated regenerator presssure drop. It is shown that, especially for the pressure drop, significant improvements can be made to the machine. However, a large part of the losses may be attributed to regenerator irreversibilities. Considering these unchanged, an estimated upper limit to the second-law efficiency of 30% is given by eliminating parasitic losses and replacing the packed spheres with a theoretical parallel plate regenerator. Furthermore, significant potential efficiency improvements through optimized regenerator geometries are estimated and discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |