Symbolic extensions and uniform generators for topological regular flows
Autor: | David Burguet |
---|---|
Přispěvatelé: | Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Applied Mathematics
010102 general mathematics [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Context (language use) Dynamical Systems (math.DS) Extension (predicate logic) Topology 01 natural sciences 010101 applied mathematics FOS: Mathematics Suspension flow Mathematics - Dynamical Systems 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Differential Equations Journal of Differential Equations, Elsevier, 2019, 267 (7), pp.4320-4372. ⟨10.1016/j.jde.2019.05.001⟩ |
ISSN: | 0022-0396 1090-2732 |
Popis: | International audience; Building on the theory of symbolic extensions and uniform generators for discrete transformations we develop a similar theory for topological regular flows. In this context a symbolic extension is given by a suspension flow over a subshift. |
Databáze: | OpenAIRE |
Externí odkaz: |