A Single Approach to Decide Chase Termination on Linear Existential Rules

Autor: Michel Leclère, Marie-laure Mugnier, Michaël Thomazo, Federico Ulliana
Přispěvatelé: Wagner, Michael, Graphs for Inferences on Knowledge (GRAPHIK), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Value from Data (VALDA ), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris, arXiv:1810.02132, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ICDT 2019-22nd International Conference on Database Theory
ICDT 2019-22nd International Conference on Database Theory, Mar 2019, Lisbonne, Portugal. pp.18:1--18:19, ⟨10.4230/LIPIcs.ICDT.2019.18⟩
[Research Report] arXiv:1810.02132. 2018
Proceedings of the 31st International Workshop on Description Logicsco-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018)
31st International Workshop on Description Logics (DL)
31st International Workshop on Description Logics (DL), Oct 2018, Tempe, United States
Scopus-Elsevier
HAL
DOI: 10.4230/lipics.icdt.2019.18
Popis: Existential rules, long known as tuple-generating dependencies in database theory, have been intensively studied in the last decade as a powerful formalism to represent ontological knowledge in the context of ontology-based query answering. A knowledge base is then composed of an instance that contains incomplete data and a set of existential rules, and answers to queries are logically entailed from the knowledge base. This brought again to light the fundamental chase tool, and its different variants that have been proposed in the literature. It is well-known that the problem of determining, given a chase variant and a set of existential rules, whether the chase will halt on any instance, is undecidable. Hence, a crucial issue is whether it becomes decidable for known subclasses of existential rules. In this work, we consider linear existential rules, a simple yet important subclass of existential rules that generalizes inclusion dependencies. We show the decidability of the all instance chase termination problem on linear rules for three main chase variants, namely semi-oblivious, restricted and core chase. To obtain these results, we introduce a novel approach based on so-called derivation trees and a single notion of forbidden pattern. Besides the theoretical interest of a unified approach and new proofs, we provide the first positive decidability results concerning the termination of the restricted chase, proving that chase termination on linear existential rules is decidable for both versions of the problem: Does every fair chase sequence terminate? Does some fair chase sequence terminate?
Comment: 28 pages
Databáze: OpenAIRE