Combining Cross-Entropy and MADS Methods for Inequality Constrained Global Optimization

Autor: Romain Couderc, Jean Bigeon, Charles Audet
Přispěvatelé: Groupe d’études et de recherche en analyse des décisions (GERAD), Université du Québec à Montréal = University of Québec in Montréal (UQAM)-HEC Montréal (HEC Montréal)-McGill University = Université McGill [Montréal, Canada]-École Polytechnique de Montréal (EPM), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: SN Operations Research Forum
SN Operations Research Forum, Springer, 2021, 2 (3), ⟨10.1007/s43069-021-00075-y⟩
ISSN: 2662-2556
DOI: 10.1007/s43069-021-00075-y⟩
Popis: International audience; This paper proposes a way to combine the Mesh Adaptive Direct Search (Mads) algorithm with the Cross-Entropy (CE) method for nonsmooth constrained optimization. The CE method is used as an exploration step by the Mads algorithm. The result of this combination retains the convergence properties of Mads and allows an efficient exploration in order to move away from local minima. The CE method samples trial points according to a multivariate normal distribution whose mean and standard deviation are calculated from the best points found so far. Numerical experiments show the efficiency of this method compared to other global optimization heuristics. Moreover, applied on complex engineering test problems, this method allows an important improvement to reach the feasible region and to escape local minima.
Databáze: OpenAIRE