Primary Ideals and Their Differential Equations
Autor: | Roser Homs, Yairon Cid-Ruiz, Bernd Sturmfels |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Constant coefficients Differential equation Polynomial ring MathematicsofComputing_NUMERICALANALYSIS 010103 numerical & computational mathematics Symbolic powers Join of ideals Commutative Algebra (math.AC) 01 natural sciences Punctual Hilbert scheme Mathematics - Algebraic Geometry Mathematics - Analysis of PDEs Primary ideals Primary ideal ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics Weyl algebra 0101 mathematics Differential operators Algebraic Geometry (math.AG) Mathematics Linear partial differential equations Ideal (set theory) CONSTRUCTION Mathematics::Commutative Algebra Applied Mathematics Mathematics - Commutative Algebra Differential operator Noetherian operators Primary decomposition Computational Mathematics Mathematics and Statistics Computational Theory and Mathematics Analysis Analysis of PDEs (math.AP) |
Zdroj: | FOUNDATIONS OF COMPUTATIONAL MATHEMATICS |
ISSN: | 1615-3383 1615-3375 |
DOI: | 10.1007/s10208-020-09485-6 |
Popis: | An ideal in a polynomial ring encodes a system of linear partial differential equations with constant coefficients. Primary decomposition organizes the solutions to the PDE. This paper develops a novel structure theory for primary ideals in a polynomial ring. We characterize primary ideals in terms of PDE, punctual Hilbert schemes, relative Weyl algebras, and the join construction. Solving the PDE described by a primary ideal amounts to computing Noetherian operators in the sense of Ehrenpreis and Palamodov. We develop new algorithms for this task, and we present efficient implementations. Comment: 32 pages. To appear in Foundations of Computational Mathematics |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |