Ampleness equivalence and dominance for vector bundles

Autor: Werner Nahm, F. Laytimi
Rok vydání: 2018
Předmět:
Zdroj: Geometriae Dedicata. 200:77-84
ISSN: 1572-9168
0046-5755
DOI: 10.1007/s10711-018-0360-3
Popis: Hartshorne in “Ample vector bundles” proved that E is ample if and only if $${\mathcal O}_{P(E)}(1)$$ is ample. Here we generalize this result to flag manifolds associated to a vector bundle E on a complex projective manifold X: For a partition a we show that the line bundle $$ Q_a^s$$ on the corresponding flag manifold $$\mathcal {F}l_s(E)$$ is ample if and only if $$ {\mathcal S}_aE $$ is ample. In particular $$\det Q$$ on $$ {G}_r(E)$$ is ample if and only if $$\wedge ^rE$$ is ample. We give also a proof of the Ampleness Dominance theorem that does not depend on the saturation property of the Littlewood–Richardson semigroup.
Databáze: OpenAIRE