Decreasing of Displacements of Prestressed Cable Truss

Autor: V. Goremikins, K. Rocens, D. Serdjuks
Jazyk: angličtina
Rok vydání: 2012
Předmět:
DOI: 10.5281/zenodo.1076238
Popis: Suspended cable structures are most preferable for large spans covering due to rational use of structural materials, but the problem of suspended cable structures is initial shape change under the action of non-symmetrical load. The problem can be solved by increasing of relation of dead weight and imposed load, but this methods cause increasing of materials consumption.Prestressed cable truss usage is another way how the problem of shape change under the action of non-symmetrical load can be fixed. The better results can be achieved if we replace top chord with cable truss with cross web. Rational structure of the cable truss for prestressed cable truss top chord was developed using optimization realized in FEM program ANSYS 12 environment. Single cable and cable truss model work was discovered.Analytical and model testing results indicate, that usage of cable truss with the cross web as a top chord of prestressed cable truss instead of single cable allows to reduce total displacements by 13-16% in the case of non-symmetrical load. In case of uniformly distributed load single cable is preferable.
{"references":["European Committee for Standardization, Eurocode 1: Actions on\nstructures - Part 2: Traffic loads on bridges, Brussels, 2004","European Committee for Standardization, Eurocode 3 : Design of steel\nstructures - Part 1.11: Design of structures with tensile components,\nBrussels, 2003.","Feyrer K., Wire Ropes. Berlin: Springer-Verlag Berlin Heidelberg, 2007.","Fletcher R., Practical methods of optimization, 2nd edition, London: John\nWilley &Sons Inc., 2000.","Gogol M., \"Shaping of Effective Steel Structures,\" in Scientific\nproceedings of Rzeszow Technical University, Rzeszow: Rzeszow\nTechnical University, 2009. [Nr. 264], pp. 43-56.","Goremikins V., Rocens K., Serdjuks D., \"Rational Structure of Cable\nTruss,\" in World Academy of Science, Engineering and Technology.\nSpecial Journal Issues, Issue 0076: 2011, pp. 571-578.","Goremikins V., Serdjuks D., \"Rational Structure of Trussed Beam,\" in\nProc. The 10th International Conference \"Modern Building Materials,\nStructures and Techniques\", Vilnius: Vilnius Gediminas Technical\nUniversity, 2010, pp. 613-618.","Goremikins V., Rocens K., Serdjuks D., \"Rational Structure of\nComposite Trussed Beam,\" in Proc. The 16th International Conference\n\"Mechanics of composite materials, Riga: Institute of Polymer\nMechanics, 2010, p. 75.","Goremikins V., Rocens K., Serdjuks D., \"Evaluation of Rational\nParameters of Trussed Beam,\" in Scientific Journal of RTU. 2. series.,\nConstruction Science, 11. vol., 2010, pp. 21-25.\n[10] Goremikins V., Rocens K., Serdjuks D. \"Rational Large Span Structure\nof Composite Pultrusion Trussed Beam,\" in Scientific Journal of RTU. 2.\nseries., Construction Science., 11. vol., 2010, pp. 26-31.\n[11] Hambly E.C. Bridge Deck Behaviour. Second edition, New York: E &\nFN Spon, 1998.\n[12] Montgomery D.C. Design and analysis of experiments, 5th edition, New\nYork: John Willey &Sons Inc., 2001.\n[13] Serdjuks, D.; Rocens, K., \"Decrease the Displacements of a Composite\nSaddle-Shaped Cable Roof,\" Mech. Compos. Materials, Vol. 40, No5.,\n2004.\n[14] Shen, Z.Y.; Li, G.Q.; Zhang, Q.L., \"Advances in steel structures,\" in\nProc. Fourth International Conference, Shanghai, China, 2005.\n[15] Strasky J. Stress Ribbon and Cable Supported Pedestrian Bridge,\nLondon: Thomas Telford Publishing, 2005.\n[16] Tibert G. Numerical Analyses of Cable Roof Structures. Stockholm:\nKTH, TS-Hogskoletryckeriet, 1999.\n[17] Wai-Fah Chen, Eric M. Lui, Handbook of structural engineering, New\nYork, 2005.\n[18] Walther R., Houriet B., Isler W., Moia P., Klein J.F. Cable Stayed\nBridges. Second edition. London: Thomas Telford, 1999.\n[19] Барабаш М, Лазнюк М., Мартынова, М., Пресняков, Н.,\nСовременные технологии расчета и проектирования\nметаллических и деревянных конструкций. (Modern Designing and\nCalculation Techniques of Steel and Timber Structures), Москва:\nИздательство Асоции строительных вузов, 2008.\n[20] Басов К., ANSYS:Справочник пользователя. (ANSYS: User Manual),\nМосква: ДМК Пресс, 2005.\n[21] Бахтин С., Овчинников И., Инамов Р., Висячие и вантовые мосты\n(Suspension and Cable Bridges), Саратов: Сарат. гос. техн. ун-т, 1999.\n[22] Беленя Е., Стальные конструкции: Спецкурс (Steel Structures:\nSpecial Course), Москва: Стройиздат, 1991.\n[23] Ведеников Г., Металлические конструкции: Общий курс(Steel\nStructures: General Course), Москва: Стройиздат, 1998. \n[24] Городецкий А., Евзоров И., 2005. Компьютерные модели\nконструкций (Structures computer models), Киев: Факт, 2005.\n[25] Ермолов В., Инженерные конструкции (Engineering Structures),\nМосква: Высшая школа, 1991.\n[26] Кирсанов М. Висячие системы повышенной жесткости\n(Suspension Structures with Increased Stiffness), Москва: Стройиздат,\n1983.\n[27] Михайлов В., Предварительно напряженные комбинированные и\nвантовые конструкции (Prestressed Combined and Cable Structures),\nМосква: ACB, 2002.\n[28] Петропавловский А., Вантовые мосты (Cable Bridges), Москва:\nТранспорт, 1985.\n[29] Смирнов В., Висячие мосты больших пролетов (Large Span\nSuspension Bridges), Москва: Высшая школа, 1970.\n[30] Трущев А., Пространственные металлические конструкции\n(Spatious Steel Structures), Москва: Стройиздат. 1983.\n[31] http://en.wikipedia.org/wiki/Bubble_sort"]}
Databáze: OpenAIRE