A Suberized Exodermis is Required for Tomato Drought Tolerance

Autor: Alex Cantó-Pastor, Kaisa Kajala, Lidor Shaar-Moshe, Concepción Manzano, Prakash Timilsena, Damien De Bellis, Sharon Gray, Julia Holbein, He Yang, Sana Mohammad, Niba Nirmal, Kiran Suresh, Robertas Ursache, G. Alex Mason, Mona Gouran, Donnelly A. West, Alexander T. Borowsky, Kenneth A. Shackel, Neelima Sinha, Julia Bailey-Serres, Niko Geldner, Song Li, Rochus Benni Franke, Siobhan M. Brady
Rok vydání: 2022
Předmět:
Zdroj: SSRN Electronic Journal.
ISSN: 1556-5068
Popis: SUMMARYPlant roots integrate environmental signals and developmental programs using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates the entry and exit of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation, but we find that it is absent in the tomato endodermis during normal development. Instead, suberin is present in the exodermis, a cell type that is absent in the model organismArabidopsis thaliana. Here, we uncover genes driving exodermal suberization and describe its effects on drought responses in tomato, unravelling the similarities and differences with the paradigmatic Arabidopsis endodermis. Cellular resolution imaging, gene expression, and mutant analyses reveal loss of this program from the endodermis, and its co-option in the exodermis. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response. Controlling the degree of exodermal suberization could be a new strategy for breeding climate-resilient plants.
Databáze: OpenAIRE