A family of reductions for Schubert intersection problems

Autor: D. Timotin, H. Bercovici, Wing Suet Li
Rok vydání: 2010
Předmět:
Zdroj: Journal of Algebraic Combinatorics. 33:609-649
ISSN: 1572-9192
0925-9899
Popis: We produce a family of reductions for Schubert intersection problems whose applicability is checked by calculating a linear combination of the dimensions involved. These reductions do not alter the Littlewood-Richardson coefficient, and they lead to an explicit solution of the intersection problem when this coefficient is 1.
Databáze: OpenAIRE