A family of reductions for Schubert intersection problems
Autor: | D. Timotin, H. Bercovici, Wing Suet Li |
---|---|
Rok vydání: | 2010 |
Předmět: |
Schubert variety
Mathematics::Combinatorics Algebra and Number Theory Multiplicative function Tree (graph theory) Measure (mathematics) Combinatorics Intersection FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics Combinatorics (math.CO) Linear combination Littlewood–Richardson rule 14N15 Mathematics |
Zdroj: | Journal of Algebraic Combinatorics. 33:609-649 |
ISSN: | 1572-9192 0925-9899 |
Popis: | We produce a family of reductions for Schubert intersection problems whose applicability is checked by calculating a linear combination of the dimensions involved. These reductions do not alter the Littlewood-Richardson coefficient, and they lead to an explicit solution of the intersection problem when this coefficient is 1. |
Databáze: | OpenAIRE |
Externí odkaz: |