Parsimonious segmentation of time series by Potts models
Autor: | Winkler, G., Kempe, A., Liebscher, V., Wittich, O., Baier, D., Warnecke, K.D. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Innovations in Classification, Data Science, and Information Systems (Proceedings of the 27th Annual Conference of the Gesellschaft für Klassifikation e.V., Cottbus, Germany, March 12-14, 2003), Part II, 295-302 STARTPAGE=295;ENDPAGE=302;TITLE=Innovations in Classification, Data Science, and Information Systems (Proceedings of the 27th Annual Conference of the Gesellschaft für Klassifikation e.V., Cottbus, Germany, March 12-14, 2003), Part II Studies in Classification, Data Analysis, and Knowledge Organization ISBN: 3540232214 |
Popis: | Typical problems in the analysis of data sets like time-series or images crucially rely on the extraction of primitive features based on segmentation. Variational approaches are a popular and convenient framework in which such problems can be studied. We focus on Potts models as simple nontrivial instances. The discussion proceeds along two data sets from brain mapping and functional genomics. |
Databáze: | OpenAIRE |
Externí odkaz: |