A converse sampling theorem in reproducing kernel Banach spaces

Autor: Hernán Centeno, Juan Miguel Medina
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Theory Signal Process and Data Analysis 20, No.8, 2022
Repositorio Institucional (UCA)
Pontificia Universidad Católica Argentina
instacron:UCA
Popis: Fil: Centeno, Hernán D. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina Fil: Medina, Juan M. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina Fil: Medina, Juan M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática; Argentina Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j Sj (t)}j and a subset of sampling points {tj}j , it results that such sequence must be a X∗ d -Riesz basis and a sampling basis for the space. Moreover, there exists an equivalent (in norm) reproducing kernel Banach space with a reproducing kernel Gsamp such that {a −1 j Gsamp(tj , .)}j and {a −1 j Sj (.)}j are biorthogonal. These results are a generalization of some known results over reproducing kernel Hilbert spaces.
Databáze: OpenAIRE