Extratropical Transition of Tropical Cyclones in a Multiresolution Ensemble of Atmosphere-Only and Fully Coupled Global Climate Models

Autor: Baker, A., Roberts, M., Vidale, P., Hodges, K., Seddon, J., Vanniere, B., Haarsma, R., Schiemann, R., Kapetanakis, D., Tourigny, E., Lohmann, K., Roberts, C., Terray, L.
Přispěvatelé: Barcelona Supercomputing Center
Rok vydání: 2022
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Journal of Climate
ISSN: 1520-0442
0894-8755
DOI: 10.1175/jcli-d-21-0801.1
Popis: Tropical cyclones undergo extratropical transition (ET) in every ocean basin. Projected changes in ET frequency under climate change are uncertain and differ between basins, so multimodel studies are required to establish confidence. We used a feature-tracking algorithm to identify tropical cyclones and performed cyclone phase-space analysis to identify ET in an ensemble of atmosphere-only and fully coupled global model simulations, run at various resolutions under historical (1950–2014) and future (2015–50) forcing. Historical simulations were evaluated against five reanalyses for 1979–2018. Considering ET globally, ensemble-mean biases in track and genesis densities are reduced in the North Atlantic and western North Pacific when horizontal resolution is increased from ∼100 to ∼25 km. At high resolution, multi-reanalysis-mean climatological ET frequencies across most ocean basins as well as basins’ seasonal cycles are reproduced better than in low-resolution models. Skill in simulating historical ET interannual variability in the North Atlantic and western North Pacific is ∼0.3, which is lower than for all tropical cyclones. Models project an increase in ET frequency in the North Atlantic and a decrease in the western North Pacific. We explain these opposing responses by secular change in ET seasonality and an increase in lower-tropospheric, pre-ET warm-core strength, both of which are largely unique to the North Atlantic. Multimodel consensus about climate change responses is clearer for frequency metrics than for intensity metrics. These results help clarify the role of model resolution in simulating ET and help quantify uncertainty surrounding ET in a warming climate. All authors received financial support from the PRIMAVERA project (European Commission Horizon2020 Grant Agreement 641727) with data access via JASMIN (https://jasmin.ac.uk) supported by IS-ENES3 (Grant Agreement 824084). AJB also received support from National Environmental Research Council (NERC) national capability grant for the North Atlantic Climate System: Integrated study (ACSIS) program (Grants NE/N018001/1, NE/N018044/1, NE/N018028/1, and NE/N018052/1). KL received funding from the German Federal Ministry of Education and Research (BMBF) through JPI Climate/JPI Oceans NextG-Climate Science-ROADMAP (FKZ: 01LP2002A). The authors are grateful to the editor and to three anonymous reviewers, whose recommendations improved this paper. AJB, PLV, RJH, and MJR conceived the study. Simulations were performed by MJR, ET, KL, CDR, and LT. Output data were managed by JS. MJR performed the cyclone tracking. BV computed the Eady growth rate. AJB undertook cyclone phase-space analysis and all other data analyses, figure preparation, and wrote the manuscript. All authors provided input in interpreting results and approved the final manuscript. The authors declare no competing interests. Peer Reviewed "Article signat per 13 autors/es: Alexander J. Baker, Malcolm J. Roberts, Pier Luigi Vidale, Kevin I. Hodges, Jon Seddon, Benoît Vannière, Rein J. Haarsma, Reinhard Schiemann, Dimitris Kapetanakis, Etienne Tourigny, Katja Lohmann, Christopher D. Roberts, and Laurent Terray"
Databáze: OpenAIRE