Magnetic shielding of a thin Al/steel/Al composite

Autor: Thierry Baudin, Xavier Mininger, Laurent Prevond, Paul Clérico, Anne-Laure Helbert
Přispěvatelé: Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie électrique et électronique de Paris (GeePs), CentraleSupélec-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Gustave Eiffel-CY Cergy Paris Université (CY)
Rok vydání: 2020
Předmět:
Zdroj: COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald, 2020, 39 (3), pp.595-609. ⟨10.1108/COMPEL-09-2019-0374⟩
ISSN: 0332-1649
DOI: 10.1108/compel-09-2019-0374
Popis: Purpose This paper aims to investigate the efficiency of a laminated composite for shielding applications. The solution has to be efficient not only for the shield against static magnetic fields but also “for low-frequency ones, in order to be well-suited for applications with electromagnetic perturbations in the frequency range DC to 100 kHz.” Design/methodology/approach The composite constituted of a steel sheet taken in a sandwich between two aluminum (Al) sheets is produced by cold roll bonding. A good adherence between Al and steel sheets, ensuring a good mechanical resistance, is obtained with a specific process. A previous study has shown that the optimal trade-off between adherence and magnetic shielding effectiveness (SEH) is obtained with a 230 µm composite produced with an initial thickness of Al and steel sheets, respectively, of 250 and 100 µm. In this paper, the 230 µm Al/steel/Al composite is used in three applications modelized by two-dimensional numerical simulations. To obtain reasonable computation time for the simulations, a homogenization method is applied to the composite. Studied applications are a cylindrical box containing a coil, a square box under an external magnetic field and a high voltage cable. Findings In each application, SEH is calculated at low frequency and different materials (Al/steel/Al, Al, steel and copper) are compared. It is observed that, in each application, the composite presents higher SEH at equal mass, especially for frequencies between 5 and 100 kHz. Originality/value The proposed approach, from the material point of view to the system consideration, shows that the thin bimetallic composite is an innovative and promising solution for magnetic shielding in the case of applications with both DC and low-frequency perturbations.
Databáze: OpenAIRE