A FINITENESS PROPERTY FOR PREPERIODIC POINTS OF CHEBYSHEV POLYNOMIALS

Autor: Thomas J. Tucker, Su-Ion Ih
Rok vydání: 2010
Předmět:
Zdroj: International Journal of Number Theory. :1011-1025
ISSN: 1793-7310
1793-0421
Popis: Let K be a number field with algebraic closure K-bar, let S be a finite set of places of K containing the archimedean places, and let f be a Chebyshev polynomial. We prove that if a in K-bar is not preperiodic, then there are only finitely many preperiodic points b in K-bar which are S-integral with respect to a.
Comment: 12 pages
Databáze: OpenAIRE