A FINITENESS PROPERTY FOR PREPERIODIC POINTS OF CHEBYSHEV POLYNOMIALS
Autor: | Thomas J. Tucker, Su-Ion Ih |
---|---|
Rok vydání: | 2010 |
Předmět: |
Chebyshev polynomials
Mathematics::Dynamical Systems Algebra and Number Theory Overline Property (philosophy) Mathematics - Number Theory 11G35 14G05 Chebyshev iteration Algebraic number field Algebraic closure Combinatorics FOS: Mathematics Number Theory (math.NT) 11G05 Chebyshev nodes Finite set Mathematics |
Zdroj: | International Journal of Number Theory. :1011-1025 |
ISSN: | 1793-7310 1793-0421 |
Popis: | Let K be a number field with algebraic closure K-bar, let S be a finite set of places of K containing the archimedean places, and let f be a Chebyshev polynomial. We prove that if a in K-bar is not preperiodic, then there are only finitely many preperiodic points b in K-bar which are S-integral with respect to a. Comment: 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |