A Residual Dense Generative Adversarial Network For Pansharpening With Geometrical Constraints

Autor: Anais Gastineau, Jean-François Aujol, Christian Germain, Yannick Berthoumieu
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, ANR-18-CE92-0050,SUPREMATIM,Super-résolution d'images multi-échelles en sciences des matériaux avec des attributs géométriques(2018)
Rok vydání: 2020
Předmět:
Zdroj: ICIP
27th IEEE international conference on image processing (ICIP 2020)
27th IEEE international conference on image processing (ICIP 2020), Oct 2020, Abou Dabi, United Arab Emirates
DOI: 10.1109/icip40778.2020.9191230
Popis: International audience; The pansharpening problem consists in fusing a high resolution panchromatic image with a low resolution multispectral image in order to obtain a high resolution multispectral image. In this paper, we adapt a Residual Dense architecture for the generator in a Generative Adversarial Network framework. Indeed, this type of architecture avoids the vanishing gradient problem faced when training a network by re-injecting previous information thanks to dense and residual connections. Moreover, an important point for the pansharpening problem is to preserve the geometry of the image. Hence, we propose to add a regularization term in the loss function of the generator: it preserves the geometry of the target image so that a better solution is obtained. In addition, we propose geometrical measures that illustrate the advantages of this new method.
Databáze: OpenAIRE