Machine learning-based uncertainty quantification for data assimilation: a simple model experiment
Autor: | Maximiliano Sacco, Juan Ruiz, Manuel Pulido, Yicun Zhen, Pierre Tandeo |
---|---|
Přispěvatelé: | Centro de Investigaciones del Mar y la Atmósfera (CIMA), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Ciencias Exactas y Naturales [Buenos Aires] (FCEyN), Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Département Mathematical and Electrical Engineering (IMT Atlantique - MEE), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Equipe Observations Signal & Environnement (Lab-STICC_OSE), Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), Universidad Nacional del Nordeste [Corrientes] (UNNE) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | European Geosciences Union European Geosciences Union, Apr 2021, Vienne, Austria. ⟨10.5194/egusphere-egu21-9254⟩ |
DOI: | 10.5194/egusphere-egu21-9254⟩ |
Popis: | Quantifying forecast uncertainty is a key aspect of state-of-the-art data assimilation systems which has a large impact on the quality of the analysis and then the following forecast. In recent years, most operational data assimilation systems incorporate state-dependent uncertainty quantification approaches based on 4-dimensional variational approaches, ensemble-based approaches, or their combination. However, these quantifications of state-dependent uncertainties have a large computational cost. Machine learning techniques consist of trainable statistical models that can represent complex functional dependencies among different groups of variables. In this work, we use a fully connected two hidden layer neural network for the state-dependent quantification of forecast uncertainty in the context of data assimilation. The input to the network is a set of three consecutive forecasted states centered at the desired lead time and the network’s output is a corrected forecasted state and an estimation of its uncertainty. We train the network using a loss function based on the observation likelihood and a large database of forecasts and their corresponding analysis. We perform observing system simulation experiments using the Lorenz 96 model as a proof-of-concept and for an evaluation of the technique in comparison with classic ensemble-based approaches. Results show that our approach can produce state-dependent estimations of the forecast uncertainty without the need for an ensemble of states (at a much lower computational cost), particularly in the presence of model errors. This opens opportunities for the development of a new type of hybrid data assimilation system combining the capabilities of machine learning and ensembles. |
Databáze: | OpenAIRE |
Externí odkaz: |