Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach
Autor: | Ramkrishna Pal, Sujit Kumar Ghosh, Leichombam Mohindro Singh, Anupam Nath, Mahuya Sengupta, Dewan S. Rahman, Rathindranath Baral, Mohammed A. H. Ali, Sudin Bhattacharya, Biswajit Chakraborty, Abhishek Basu |
---|---|
Rok vydání: | 2016 |
Předmět: |
Male
0301 basic medicine Silver Fibrosarcoma Immunology Metal Nanoparticles medicine.disease_cause Silver nanoparticle Proinflammatory cytokine Mice 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Downregulation and upregulation In vivo medicine Animals Immunology and Allergy Cells Cultured Reactive nitrogen species Pharmacology chemistry.chemical_classification Reactive oxygen species Tumor Necrosis Factor-alpha Chemistry Macrophages Cell Differentiation Interleukin-12 Interleukin-10 Oxidative Stress Phenotype 030104 developmental biology 030220 oncology & carcinogenesis Cancer research Tumor necrosis factor alpha Gold Reactive Oxygen Species Oxidative stress Methylcholanthrene |
Zdroj: | International Immunopharmacology. 38:332-341 |
ISSN: | 1567-5769 |
DOI: | 10.1016/j.intimp.2016.06.006 |
Popis: | Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. |
Databáze: | OpenAIRE |
Externí odkaz: |