Numerical Simulation of Conservation Laws with Moving Grid Nodes: Application to Tsunami Wave Modelling

Autor: Gayaz Khakimzyanov, Nina Shokina, Denys Dutykh, Dimitrios Mitsotakis
Přispěvatelé: Institute of Computational Technologies, Russian Academy of Sciences [Moscow] (RAS), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Victoria University of Wellington, University of Freiburg [Freiburg]
Rok vydání: 2020
Předmět:
Computer science
advection
FOS: Physical sciences
Physics - Classical Physics
01 natural sciences
moving grids
010305 fluids & plasmas
adaptivity
Dimension (vector space)
Simple (abstract algebra)
wave run-up
0103 physical sciences
FOS: Mathematics
conservative finite differences
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Mathematics - Numerical Analysis
0101 mathematics
finite volumes
Conservation law
Finite volume method
shallow water equations
Computer simulation
Advection
lcsh:QE1-996.5
74S10 (primary)
74J15
74J30 (secondary)

Classical Physics (physics.class-ph)
Numerical Analysis (math.NA)
Computational Physics (physics.comp-ph)
Grid
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
010101 applied mathematics
lcsh:Geology
Waves and shallow water
General Earth and Planetary Sciences
conservation laws
Algorithm
Physics - Computational Physics
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Interpolation
Zdroj: Geosciences, Vol 9, Iss 5, p 197 (2019)
Geosciences
Geosciences, MDPI, 2019, 9 (5), pp.197. ⟨10.3390/geosciences9050197⟩
Volume 9
Issue 5
ISSN: 2076-3263
DOI: 10.26686/wgtn.12501854
Popis: In the present article, we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with an appropriate predictor&ndash
corrector method to achieve higher resolutions. The underlying finite volume scheme is conservative, and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed
thus, unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according to the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.
Databáze: OpenAIRE