A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)

Autor: Elvis Žic, Nevenka Ožanić, Željko Arbanas, Nenad Bićanić
Rok vydání: 2015
Předmět:
Zdroj: Natural Hazards and Earth System Sciences, Vol 15, Iss 2, Pp 293-313 (2015)
ISSN: 1684-9981
Popis: Mudflows regularly generate significant human and property losses. Analyzing mudflows is important to assess the risks and to delimit vulnerable areas where mitigation measures are required. In recent decades, modeling of the propagation stage has been largely performed within the framework of continuum mechanics, and a number of new and sophisticated computational models have been developed. Most of the available approaches treat the heterogeneous and multiphase moving mass as a single-phase continuum. The smoothed particle hydrodynamics model (SPH model) adopted here considers, in two phases, a granular skeleton with voids filled with either water or mud. The SPH depth integrated numerical model (Pastor et al., 2009a) used for the present simulations is a 2-D model capable of predicting the runout distance, flow velocity, deposition pattern and the final volume of mudflows. It is based on mathematical and rheological models. In this study, the main characteristics of mudflow processes that have emerged in the past in the area downstream of the Grohovo landslide are examined, and the more relevant parameters and attributes describing the mudflow are presented. Principal equations that form the basis of the SPH depth integrated model are reviewed and applied to analyze the Grohovo landslide and the propagation of the mudflow wave downstream of the landslide. Based on the SPH method, the runout distance, quantities of the deposited materials and the velocity of mudflow progression which occurred in the past at the observed area are analysed and qualitatively compared to the recorded consequences of the actual event.
Databáze: OpenAIRE