Magnetocentrifugal acceleration of plasma in a nonaxisymmetric magnetosphere

Autor: S. V. Bogovalov
Rok vydání: 2001
Předmět:
Zdroj: Astronomy & Astrophysics. 367:159-169
ISSN: 1432-0746
0004-6361
Popis: Violation of the axial synnetry of a magnetic field essentially modifies the physics of the plasma outflow in the magnetosphere of rotating objects. In comparison to the axisymmetric outflow, two new affects appear: more efficient magnetocentrifugal acceleration of the plasma along particular field lines and generation of MHD waves. Here, we use an ideal MHD approximation to study the dynamics of a cold wind in the nonaxisymmetric magnetosphere. We obtain a self-consistent analytical solution of the problem of cold plasma outflow from a slowly rotating star with a slightly nonaxisymmetric magnetic field using perturbation theory. In the axisymmetric (monopole-like) magnetic field, the first term in the expansion of the terminating energy of the plasama in powers of $\Omega$ is proportional to $\Omega^4$, where $\Omega$ is the angular velocity of the central source. Violation of the axial symmetry of the magnetic field crucially changes this dependence. The first correction to the energy of the plasma becomes proportional to $\Omega$. Efficient magnetocentrifugal acceleration occurs along the field lines curved initially in the direction of the rotation. I argue that all necessary conditions for the efficient magnetocentrifugal acceleration of the plasma exist in the radio pulsar megnetosphere. We calculated the first correction of the rotational losses due to the generation of the MHD waves and analysed the plasma acceleration by these waves.
Comment: accepted for publication in Astronomy & Astrophysics
Databáze: OpenAIRE