Application and Optimal Control for an HBV Model with Vaccination and Treatment
Autor: | Jing Zhang, Suxia Zhang |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Hepatitis B in China Hepatitis B virus Mathematical optimization Article Subject lcsh:Mathematics Stability (learning theory) lcsh:QA1-939 Optimal control medicine.disease_cause Vaccination 03 medical and health sciences 030104 developmental biology 0302 clinical medicine Modeling and Simulation medicine 030211 gastroenterology & hepatology Basic reproduction number Mathematics |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2018 (2018) |
ISSN: | 1607-887X 1026-0226 |
DOI: | 10.1155/2018/2076983 |
Popis: | In this study, we formulate a model for hepatitis B virus with control strategies of newborn vaccination and treatment. Mathematical analysis is done theoretically and numerically. The results indicate that the stability of equilibria and persistence of the disease are determined by the basic reproductive number R0. Using the least squares method, the model is applied to simulate yearly new infected cases of hepatitis B in China from 2004 to 2016. Moreover, optimal control problem with newborn vaccination and treatment appearing as functions of time is analyzed by classical optimal theory. The existence of the solution to optimality system is proved, and the simulations are conducted to show the results when optimal control or current intervention is used. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |