Relative crystalline representations and $p$-divisible groups in the small ramification case

Autor: Yong Suk Moon, Tong Liu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Algebra Number Theory 14, no. 10 (2020), 2773-2789
ISSN: 2773-2789
Popis: Let $k$ be a perfect field of characteristic $p > 2$, and let $K$ be a finite totally ramified extension over $W(k)[\frac{1}{p}]$ of ramification degree $e$. Let $R_0$ be a relative base ring over $W(k)\langle t_1^{\pm 1}, \ldots, t_m^{\pm 1}\rangle$ satisfying some mild conditions, and let $R = R_0\otimes_{W(k)}\mathcal{O}_K$. We show that if $e < p-1$, then every crystalline representation of $��_1^{\text{��t}}(\mathrm{Spec}R[\frac{1}{p}])$ with Hodge-Tate weights in $[0, 1]$ arises from a $p$-divisible group over $R$.
19 pages; changed the title; added section 6 and more details
Databáze: OpenAIRE