A New Hybrid Approach for Solving Large-scale Monotone Nonlinear Equations
Autor: | Jamilu Sabi’u, M. K. Dauda, Mohammed Yusuf Waziri, Abdullah Shah |
---|---|
Rok vydání: | 2020 |
Předmět: |
Scale (ratio)
General Mathematics General Physics and Astronomy 010103 numerical & computational mathematics 01 natural sciences General Biochemistry Genetics and Molecular Biology Projection (linear algebra) Conjugate gradient method Convergence (routing) Applied mathematics 0101 mathematics lcsh:Science lcsh:Science (General) Mathematics Multidisciplinary Line search General Chemistry General Medicine projection strategy global convergence 010101 applied mathematics monotone equations Nonlinear system Monotone polygon Scheme (mathematics) General Earth and Planetary Sciences lcsh:Q line search General Agricultural and Biological Sciences lcsh:Q1-390 |
Zdroj: | Journal of Mathematical and Fundamental Sciences, Vol 52, Iss 1, Pp 17-26 (2020) |
ISSN: | 2338-5510 2337-5760 |
DOI: | 10.5614/j.math.fund.sci.2020.52.1.2 |
Popis: | In this paper, a new hybrid conjugate gradient method for solving monotone nonlinear equations is introduced. The scheme is a combination of the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) conjugate gradient methods with the Solodov and Svaiter projection strategy. Using suitable assumptions, the global convergence of the scheme with monotone line search is provided. Lastly, a numerical experiment was used to enumerate the suitability of the proposed scheme for large-scale problems. |
Databáze: | OpenAIRE |
Externí odkaz: |