Personality biomarkers of pathological gambling

Autor: Antonio Cerasa a, j, Danilo Lofaro b, h, Paolo Cavedini c, Iolanda Martino a, Antonella Bruni d, Alessia Sarica a, Domenico Mauro e, Giuseppe Merante f, Ilaria Rossomanno a, Maria Rizzuto a, Antonio Palmacci g, Benedetta Aquino h, Pasquale De Fazio d, Giampaolo R. Pernac k, l, Elena Vanni c, Giuseppe Olivadese a, Domenico Conforti b, Gennarina Arabia i, Aldo Quattrone a, i
Přispěvatelé: RS: MHeNs - R2 - Mental Health, Psychiatrie & Neuropsychologie
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of neuroscience methods 294 (2018): 7–14. doi:10.1016/j.jneumeth.2017.10.023
info:cnr-pdr/source/autori:Antonio Cerasa a,j, Danilo Lofaro b,h, Paolo Cavedini c, Iolanda Martino a, Antonella Bruni d, Alessia Sarica a, Domenico Mauro e, Giuseppe Merante f, Ilaria Rossomanno a, Maria Rizzuto a, Antonio Palmacci g, Benedetta Aquino h, Pasquale De Fazio d, Giampaolo R. Pernac k,l, Elena Vanni c, Giuseppe Olivadese a, Domenico Conforti b, Gennarina Arabia i, Aldo Quattrone a,i/titolo:Personality biomarkers of pathological gambling: A machine learning study./doi:10.1016%2Fj.jneumeth.2017.10.023/rivista:Journal of neuroscience methods/anno:2018/pagina_da:7/pagina_a:14/intervallo_pagine:7–14/volume:294
Journal of Neuroscience Methods, 294, 7-14. Elsevier Science
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2017.10.023
Popis: Background: The application of artificial intelligence to extract predictors of Gambling disorder (GD) is a new field of study. A plethora of studies have suggested that maladaptive personality dispositions may serve as risk factors for GD. New method: Here, we used Classification and Regression Trees algorithm to identify multivariate predictive patterns of personality profiles that could identify GD patients from healthy controls at an individual level. Forty psychiatric patients, recruited from specialized gambling clinics, without any additional comorbidity and 160 matched healthy controls completed the Five-Factor model of personality as measured by the NEO-PI-R, which were used to build the classification model. Results: Classification algorithm was able to discriminate individuals with GD from controls with an AUC of 77.3% (95% CI 0.65-0.88, p < 0.0001). A multidimensional construct of traits including sub-facets of openness, neuroticism and conscientiousness was employed by algorithm for classification detection. Comparison with existing method(s): To the best of our knowledge, this is the first study that combines behavioral data with machine learning approach useful to extract multidimensional features characterizing GD realm. Conclusion: Our study provides a proof-of-concept demonstrating the potential of the proposed approach for GD diagnosis. The multivariate combination of personality facets characterizing individuals with GD can potentially be used to assess subjects' vulnerability in clinical setting. (C) 2017 Elsevier B.V. All rights reserved.
Databáze: OpenAIRE