On Duality for Lyapunov Functions of Nonstrict Convex Processes
Autor: | M. Kanat Camlibel, Jaap Eising |
---|---|
Přispěvatelé: | Systems, Control and Applied Analysis |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Lyapunov function
0209 industrial biotechnology 010102 general mathematics Linear system Stability (learning theory) Regular polygon Duality (optimization) 02 engineering and technology 01 natural sciences Dual (category theory) Controllability Nonlinear Sciences::Chaotic Dynamics symbols.namesake 020901 industrial engineering & automation Optimization and Control (math.OC) FOS: Mathematics symbols Applied mathematics Process control 0101 mathematics Mathematics - Optimization and Control Mathematics |
Zdroj: | 2020 59th IEEE Conference on Decision and Control, CDC 2020, 1288-1293 STARTPAGE=1288;ENDPAGE=1293;TITLE=2020 59th IEEE Conference on Decision and Control, CDC 2020 CDC |
ISSN: | 0743-1546 |
Popis: | This paper provides a novel definition for Lyapunov functions for difference inclusions defined by convex processes. It is shown that this definition reflects stability properties of nonstrict convex processes better than previously used definitions. In addition the paper presents conditions under which a weak Lyapunov function for a convex process yields a strong Lyapunov function for the dual of the convex process. |
Databáze: | OpenAIRE |
Externí odkaz: |