On Duality for Lyapunov Functions of Nonstrict Convex Processes

Autor: M. Kanat Camlibel, Jaap Eising
Přispěvatelé: Systems, Control and Applied Analysis
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 2020 59th IEEE Conference on Decision and Control, CDC 2020, 1288-1293
STARTPAGE=1288;ENDPAGE=1293;TITLE=2020 59th IEEE Conference on Decision and Control, CDC 2020
CDC
ISSN: 0743-1546
Popis: This paper provides a novel definition for Lyapunov functions for difference inclusions defined by convex processes. It is shown that this definition reflects stability properties of nonstrict convex processes better than previously used definitions. In addition the paper presents conditions under which a weak Lyapunov function for a convex process yields a strong Lyapunov function for the dual of the convex process.
Databáze: OpenAIRE