Inhibition of phosphatidylcholine biosynthesis and cell proliferation in trypanosomacruzi by ajoene, an antiplatelet compound isolated from garlic
Autor: | Marta M. Piras, Romano Piras, Edgar Marchán, Rafael Apitz-Castro, Tania Aguirre, Julio A. Urbina, Keyla Lazardi, Gonzalo Visbal, Francisco Gil |
---|---|
Rok vydání: | 1993 |
Předmět: |
Trypanosoma cruzi
Phospholipid Biology Biochemistry chemistry.chemical_compound Phosphatidylcholine Animals Ajoene Disulfides Garlic Vero Cells Phospholipids Pharmacology chemistry.chemical_classification Phosphatidylethanolamine Plants Medicinal Plant Extracts Cell growth Phosphatidylethanolamines Fatty Acids Fatty acid Intracellular Membranes chemistry Cell culture Sulfoxides Phosphatidylcholines Growth inhibition Cell Division Platelet Aggregation Inhibitors |
Zdroj: | Biochemical Pharmacology. 45:2381-2387 |
ISSN: | 0006-2952 |
DOI: | 10.1016/0006-2952(93)90217-k |
Popis: | Ajoene [( E,Z )-4,5,9-trithiadodeca-1,6,11-triene 9-oxide], a potent antiplatelet compound derived from garlic, inhibits the proliferation of both epimastigotes and amastigotes of Trypanosoma cruzi , the causative agent of Chagas' disease. The growth of the epimastigote form was immediately arrested by 80 μM ajoene, while 100 μM induced cell lysis in 24 hr. In the amastigote form proliferating inside VERO cells, 40 μM ajoene was sufficient to eradicate the parasite from the host cells in 96 hr. Growth inhibition of the epimastigotes was accompanied by a gross alteration of the phospholipid composition of the treated cells in which phosphatidylcholine (PC), the major phospholipid class present in control cells, dropped to the least abundant phospholipid in cells treated with 60 μM ajoene for 96 hr, while its immediate precursor, phosphatidylethanolamine (PE), became the predominant species; this was correlated with a marked drop in the incorporation of [ 14 C-U]acetate in PC and a corresponding increase in PE. Concomitant with the change in the phospholipid headgroup composition of the cells, the fatty acids esterified to this lipid fraction underwent a dramatic alteration due to the increase in the content of saturated fatty acids and a marked reduction in the content of linoleic (18:2) acid, which is the predominant fatty acid in control cells. We also found that ajoene inhibited the de novo synthesis of neutral lipids and, in particular, of sterols in the epimastigotes, but the resultant changes in the sterol composition were not sufficient to explain the antiproliferative effects of the drug. Electron-microscopy showed a concentration-dependent alteration of intracellular membranous structures, particularly the mitochondrion and endoplasmatic reticulum. The results suggest that one important factor associated with the antiproliferative effects of ajoene against T. cruzi is its specific alteration of the phospholipid composition of these cells. |
Databáze: | OpenAIRE |
Externí odkaz: |